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 ABSTRACT: The dynamic analysis of uniform prestressed Bernoulli-Euler beam resting on bi-parametric subgrades 
and traversed by concentrated loads having simple support ends conditions is investigated in this paper. The solution 
technique is based on the Finite Fourier Sine transform with the series representation of the Dirac-delta function, a 
modification of Struble’s asymptotic method and Laplace transformation in conjunction with convolution theory. 
Analytical solution and numerical analysis showed that higher values of axial force N, shear modulus G and 
Foundation modulus K, reduced the response amplitudes of the beam when is under the action of moving 
concentrated loads. However, higher values of shear modulus G are required for a more noticeable effect than the 
values of foundation modulus K. Also, the critical speed for the system traversed by moving force is found to be 
smaller than that under the influence of moving mass, hence resonance is reaches earlier in the moving mass problem 
than that of the moving force problem. 

Keywords: Uniform Elastic beam, bi-parametric sub-grades, pre-stress, Concentrated Loads, Resonance, Moving 
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——————————      —————————— 
 

1.   Introduction 
The study of the dynamic response to moving 
loads of elastic solid bodies (beam, plates or 
shells) has been the concerned of several 
researchers in applied mathematics, physics and 
Engineering. By virtue of the relevance of the 
study in the analysis and design of railway, 
bridges, elevated roadways, decking slabs, the 
dynamics response of structural members under 
the passage of moving loads has been 
extensively investigated and a number of 
experimental and numerical studies have been 
reported in literature in recent years. Fryba [1] is 
an excellent book on analytical solution of 
moving loads over structures. Cifuentes [2] has 
studied the subject using auxiliary functions 
with finite element approximation. Wu [3] 
studied  

vibrations of a frame structure due to a moving 
trolley and the hoisted object. Yavari et al  [4] 
have investigated analytical solution of dynamic 
response of an overhead crane system. 
Gbadeyan and Oni [5] consider the dynamic 
behaviours of beams and rectangular plates 
under moving loads. 
 Several other researchers have made 
tremendous feat into the study of dynamic of 
structures under moving loads in the recent 
years. These include Oni [6], Oni and Omoloje 
[U.S.A] [7], Oni and Awodola [8], Yuksel and 
Aksoy [9], Pesterer et al [10], Vostrunkhor and 
Metrikine [11], Nguyen [13] and Gbadeyan et al 
[17]. 
However, the above studies considered only the 
Winkler approximation model which has been 
criticized variously by Authors [14, 15, 16] 
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because it predicts discontinuities in the 
deflection of the surface of the foundation at the 
ends of a finite beam, which is in contradiction 
to observations made in practice. 
To this end, Coskun [17] considered the 
dynamic response to a harmonic load of a finite 
beam on tensionless two parameter foundation; 
Guter [18] studied the circular elastic plate 
resting on a tensionless Pasternak foundation 

under symmetric and asymmetric loading while 
Ma et al studied the static analysis of an infinite 
beam resting on a tensionless Pasternak 
foundation.  
Thus, this paper investigated the dynamic 
response to moving concentrated load of pre-
stressed uniform simply supported Bernoulli-
Euler beam resting on bi-parametric sub-
grades, in particular, Pasternak sub-grades. 

   

2   THE INITIAL BOUNDARY-VALUE PROBLEM. 
        The governing partial differential equation 
for a uniform pre-stressed simply supported 
Bernoulli-Euler beam of length L on bi-
parametric subgrades, in particular Pasternak 

subgrades and traversed by a concentrated load 
P(x,t) of mass M moving with velocity c is given 
by . 
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where, E is the young modulus, I is the moment 
of inertia, EI is the flexural rigidity of the 
beam, V(x, t) is the transverse deflection, µ is 
the constant mass per unit length of the beam, 
N is the constant axial force, x is the spatial 

coordinate taking along the axis of the beam, t 
is the time variable and ),( txPG is the 
foundation reaction given by 
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        In this system, when the effect of the mass 
of the moving load on the transverse 
displacement of the Uniform Bernoulli-Euler 

beam is considered, the load P(x, t) takes the 
form  
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where the continuous moving force Pf (x,t) 
acting on the beam model is given as 

 )(),( ctxMgtxPf −= δ                (2.4) 

where M and c are the mass and the speed of the 
moving load respectively, g is the acceleration due to gravity and 2

2

dt
d

is a convective 

acceleration operation defined as 

IJSER

http://www.ijser.org/


International Journal of Scientific & Engineering Research, Volume 7, Issue 9, September-2016                                                          586 
ISSN 2229-5518 

IJSER © 2016 
http://www.ijser.org 

              2

222

2

2

2

2 2
x

c
tx

c
tdt

d
∂
∂

+
∂∂
∂

+
∂
∂

=                              (2.5) 

and )( ctx −δ is the Dirac delta function defined as 
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In mechanics, the Dirac delta function may be 
thought of as a unit concentrated force acing at a 
point  

X = 0 

The Bernoulli-Euler beam under consideration is 
assumed to be uniform, which implies, the 

beams properties such as young’s modulus E, 
the moment of inertia I and the mass per unit 
length µ of the beam do not vary throughout the 
span L of the beam. Using equations (2.2), (2.3), 
(2.4), and (2.5) in equation (2.1) and after 
rearrangement one obtains. 
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where 
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 and      
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MgP =                                                                                                                                 (2.12b)   

The Simply Supported boundary conditions are  
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and the associated initial conditions are 
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 3. SOLUTION PROCEDURE. 

Equation (2.11) is a fourth order partial 
differential equation with variable and singular 
coefficients. In this section, a general approach 
is developed in order to solve the initial- 
boundary value problem. The approach involves 
expressing the Dirac-delta function as a Fourier 
cosine series and then reducing the modified 

form of the fourth order partial differential 
equation above using the Finite Fourier sine 
transform (3.1). The resulting couple 
transformed differential equation is then 
simplified using the modified Struble’s 
asymptotic technique. The Finite Fourier sine 
transform is defined by 
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In order to solve equation (2.11) subject to (2.12). Thus, applying (3.1) to (2.11), we obtain. 
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In view of equation (3.2), evaluation of integrals (3.4) gives  
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          In order to evaluate integrals (3.5a), use is made of the Dirac-delta function as an even 
function to express it as a Fourier Cosine Series namely, 
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Substituting (3.8) into (3.5a), )(tTB can be rewritten as  
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Further simplification and rearrangement yield 
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Using similar argument, it is straight forward to show that 
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              Substituting equations (3.7),(3.12),(3.13) and (3.14) into (3.3), one obtains. 
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Equation (3.15) represents the transformed equation of the uniform Bernoulli-Euler beam model simply 
supported at both ends. In the next section, we discuss two special cases of the equation.  

4.     ANALYSIS OF THE TRANSFORMED EQUATION 

(i) Case1 

Setting 00 =α  in equation (3.15), we have 

L
xmPSintmZtmZ mftt
πω =+ ),(),( 2                                                          (4.1) 
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 This represents the classical case of a moving 
force problem associated with our system. It is 
an approximate model, which assumes the 
inertia effect of the moving mass as negligible. 

             Solving equation (4.1) in conjuction 
with the initial conditions (2.13) and inverting 
gives  
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 Equation (4.2) represents the transverse 
displacement response to a moving concentrated 
force, moving at constant velocity of a uniform 
simply supported Bernoulli-Euler beam resting 
on bi-parametric sub-grades, in particular, 
Pasternak subgrades. 

 

ii case ll 

If the moving load has mass commensurable 
with that of the structure, the inertia effect of the 

moving load is not negligible. Thus, in this case 
00 α , and we are required to solve the entire 

equation (3.15). This, we term the moving mass 
problem. Evidently, a closed form solution of 
equation (3.15) is not possible.  

    Unlike case1, it is obvious that an exact 
analytical solution to this equation is not 
possible. Thus, we resort to an approximate 
analytical method which is a modification of the 
asymptotic method due to Struble. First, 
equation (3.15) is rearrange to take the form 
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Next, we consider the homogeneous part of (4.3) 
and obtain a modified frequency corresponding 
to the frequency of the free system due to the 
presence of the moving mass.An equivalent free 
system operator defined by the modified 
frequency then replaces equation (4.3). 

        In order to do this, we consider a parameter 
1α <1 for any arbitrary mass ratio 0α defined by  
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Next, we substitute equation (4.10) into (4.3) to obtains  
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          When we set 01 =α , we obtain a case corresponding to the case when the inertial effect of the 
mass of the system is neglected, the solution of (4.3) can be written as 
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      Where mφ and mψ  are constants. 

 

             Since 11 <α , an asymptotic solution of the homogeneous part of (4.3) can be written as  
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Where ),( tmφ and ),( tmψ are slowly time 
varying functions. The modified frequency is 
obtained by substituting equation (4.14) into the 
homogeneous part of equation (4.3). The 
resulting variational equations describing the 
behaviour of ),( tmφ and ),( tmψ during the 

motion of the mass determine the modified 
frequency. 

       Thus, substituting (4.14) into the 
homogeneous part of (4.3) and neglecting terms 
which do not contribute to variational equations, 
we have. 
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Retaining terms to )(0 1α only. 

             The variational equations of our problem are obtained by setting coefficients of 
)),(( tmtSin mf ψω − and ),(( tmtCos mf ψω − to zero respectively. Thus, we have  
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Solving (4.16) and (4.17), one obtains 
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Where kB is a constant and  
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               Therefore, when the effect of the mass of the particle is considered, the first approximation to 
the homogeneous system is  
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Where 
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Is called the modified natural frequency representing the frequency of the free system due to the presence 
of the moving mass.     

     Thus, the homogeneous part of (4.3) can be written as 
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and equation (4.3) then takes the form 
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Retaining terms to 0( 1α ) only. 

Solving equation (4.23) in conjuction with the initial conditions and inverting we obtain 
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  This represents the transverse displacement 
response to a concentrated mass moving with 
constant velocity of simply supported 

prestressed uniform Bernoulli-Euler beam 
resting on bi-parmetric sub-grades, in 
particular,pasternak subgrades. 

5. ANALYSIS OF RESULTS 
 
In a dynamical problem such as this, one 
is interested in the resonance condition. 
These are the conditions under which 
the Bernoulli-Euler beam responses 
grow without bound. 

         Evidently, from equation (4.2), the 
Bernoulli-Euler beam response under a moving 
force will grow witnout bound whenever. 
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While from equation (4.24), the same Bernoulli-Euler beam traversed by a moving mass 
encounter a resonance effect at  
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From equation (4.21) we have  
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It can be deduced from equation (5.3) that, for 
the same natural frequency, the critical speed for 
the system of Bernoulli-Euler beam traversed by 
a moving mass is smaller than that of the same 
system traversed by a moving force. Thus, for 

the same natural frequency of the Bernoulli-
Euler beam, the resonance is reach earlier by 
considering the moving mass system than by 
moving force system.   

 

6. NUMERICAL CALCULATIONS AND DISCUSSIONS OF RESULTS 

In this section, numerical results for the uniform 
simply supported Bernoulli-Euler beam are 
presented in plotted curves. An elastic beam of 
length 12.192m is considered. Other values used 
are modulus of elasticity E = 2.10924 x 
1010N/m2, the moment of inertia I = 2.87698 x 
10-3m and mass per unit length of the beam µ = 
3401.563Kg/m. The value of the foundation 
constant (k) is varied between ON/m3 and 
400000N/m3, the value of axial force N is varied 
between ON and 2.0 x 108N, the values of the 
shear modulus (G) varied between ON/m3 and 900 
000N/m3. The results are as shown in the various 
graphs below. 

Figure1, displays the transverse displacement 
response to a moving force of simply supported 
pre-stressed uniform Bernoulli-Euler beam for 
various values of axial force and for fixed value 

of shear modulus G and foundation moduli K. 
The graphs show that the response amplitudes 
increases as the value of the axial force 
decreases for fixed values of foundation stiffness 
K and shear modulus G. Figure 2 also shows the 
deflection profile due to moving force of a 
simply supported uniform Bernoulli-Euler beam 
for fixed value of shear modulli G, axial force N 
and various values of foundation modulli K. The 
graph shows that the response amplitudes of the 
beam decreases as the values of the foundation 
modulli K are increased.Figure3 shows the 
deflection profile of a simply supported 
Bernoulli-Euler beam for various values of shear 
modulus G and for fixed values of foundation 
modulus K and axial force N. The graph shows 
that increased in the values of the shear modulus 
reduce the response amplitudes of the beam. 
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Fig.1: Deflection profile of a Simply supported uniform Bernoulli-Euler Beam under moving force for 
fixed values of Shear modulus (G=90000), Foundation Modulus (k=40000) and various values of Axial 
Force (N) 

 

  

 

 

 

 

 

 

 

Fig.2: Deflection profile of a Simply supported uniform Bernoulli-Euler Beam under moving force for 
fixed values of Shear modulus (G=90000), Axial force (N=20000) and various values of Foundation 
modulli (K) 
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Fig 3: Deflection profile of the simply supported uniform Bernoulli-Euler beam under a moving force for 
various values of shear modulus G, and fixed values of axial force and foundation modulli K 

 

 

 

 

 

 

 

 

 

 

 

Fig 4: Deflection profile of a Simply supported uniform Bernoulli-Euler Beam under moving mass for 
fixed values of Shear modulus (G=90000), Foundation Modulus (k=40000) and various values of Axial 
Force (N) 
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Furthermore, Figure 5 displays the transverse 

displacement response of a uniform simply supported 

Bernoulli-Euler beam under the action of moving 

masses for various values of foundation modulus K 

and fixed values of axial force N=20000 and shear 

modulus G=90000.Evidently, as K increases the 

deflection of the uniform beam decreases. The 

deflection profiles of the beam for various values of 

the shear modulus G and for fixed values of the axial 

force N=20000 and foundation modulus K=40000 are 

shown in figure 6.It is shown that as shear modulus 

increases the deflection of the beam decreases. 

Finally, Figure 7 depicts the comparism of the 

transverse displacement of the moving force and 

moving mass for fixed values of the axial force 

N=20000, shear modulus G=90000 and foundation 

modulus K=40000.Obviously, the graph shows that, 

the response amplitudes of the moving mass is higher 

than that of a moving force, sowing that the moving 

force solution is not always an upper bound for the 

accurate solution to a moving mass problem. This 

shows that relying on moving force solution could 

seriously be misleading and tragic. 
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Fig 5: Deflection profile of a Simply supported uniform Bernoulli-Euler Beam under moving mass for fixed values 
of Shear modulus (G=90000), Axial force (N=20000) and various values of Foundation modulli (K) 

 

 

 

 

 

 

 

 

 

Fig 6: Deflection profile of the simply supported uniform Bernoulli-Euler beam under a moving mass for various 
values of shear modulus G, and fixed values of axial force and foundation modulli K 

 

 

 

 

 

 

-0.001

-0.0008

-0.0006

-0.0004

-0.0002

0

0.0002

0.0004

0.0006

0.0008

0.001

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

TIME(SECS)

DI
SP

LA
CE

M
EN

T(
m

)

K=0
K=40000
K=400000
K=4000000

-0.0004

-0.0003

-0.0002

-0.0001

0

0.0001

0.0002

0.0003

0.0004

0.0005

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

TIME(SECS)

DI
SP

LA
CE

M
EN

T(
m

)

G=0
G=90000
G=900000
G=9000000IJSER

http://www.ijser.org/


International Journal of Scientific & Engineering Research, Volume 7, Issue 9, September-2016                                                          599 
ISSN 2229-5518 

IJSER © 2016 
http://www.ijser.org 

 

 

 

 

 

 

 

 

Fig 7:Comparison of the displacement response of moving force and moving mass cases for simply supported 
Bernoulli-Euler beam for fixed axial force N(20000),foundation modulus K(40000) and shear modulusG(90000). 

 

7.     Conclusion 

        In this paper, the problem of the dynamic 
response to moving concentrated load of a 
prestressed Uniform Simply Supported 
Bernoulli-Euler beam resting on bi-parametric 
subgrades, in particular, Pasternak subgrades has 
been solved. The approximate analytical 
solution technique is based on the finite Fourier 
sine transform, Laplace transformation and 
convolution theory and finally modification of 
the Struble’s asymptotic method. Analytical 
solutions and Numerical analysis show that, the 
critical speed for the same system consisting of a 
pre-stressed uniform simply supported 
Bernoulli-Euler beam resting on bi-parametric 

subgrades, in particular, Pasternak subgrades 
and traversed by a moving mass is smaller than 
that traversed by a moving force and this shows 
that, moving force solution is not an upper 
bound for the accurate solution of the moving 
mass problem. Furthermore, an increase in the 
foundation modulus K with fixed values of shear 
modulus G and axial force N reduces the 
amplitudes of vibration of the beam. Also, the 
amplitudes of vibration decreases with an 
increases in the values of the shear modulus with 
fixed values of foundation modulus and axial 
force. Also, increase in the values of the axial 
force with fixed values of shear modulus and 
foundation modulus. Finally, it was observed 
that, higher values of shear modulus are required 
for a more noticeable effect than that of the 
foundation modulus.                        
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